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ABSTRACT

Crop disease is a serious problem for agricultural performance, food security and economic stability around
the world. Early and accurate detection of agricultural diseases is important to minimize losses, maintain
culture health and ensure optimal profitability. This study examines the use of Adhesive Neural Networks
(CNNs) for the automatic detection and classification of agricultural diseases using images. Known for
exceptional indicators in image recognition problems, CNNs are used to analyze visual models and
symptoms of disease in cultured leaves. This study uses modern CNN architectures such as VGG16, ResNet,
Inception, and Densenet to develop reliable detection structures. The study highlights the potential to
transform deep agricultural education by reducing reliance on manual testing in high-intensity labor forces
and promoting sustainable agricultural processes. The results of this study contribute to improving
agriculture accuracy and paving the way for in-depth research in the integration of artificial intelligence-
based solutions in agricultural systems.

Keywords: Deep learning (DL), Convolutional neural network (CNN), machine learning (ML),
Artificial intelligence (Al), feature extraction (FE), Image processing, VGG 16, Crop disease recognition,
Dense Net, Mobile Net, Efficient Net.

INTRODUCTION
Background

Agriculture is the foundation of the global economy, providing food, raw materials and employment to a large
part of the population. It maintains human life and plays an important role in stimulating the national economy,
especially in developing countries. However, agricultural productivity is increasingly threatened by a variety of
issues, including pests, climate change, soil degradation and, above all, agricultural crop disease.

Agricultural crop diseases caused by pathogens such as fungi, bacteria, viruses, nematodes can have serious effects
on plant health. These diseases not only reduce productivity and quality, but also lead to significant economic
losses, contributing to the global lack of food security. According to the Food and Agriculture Organization
(FAO), plant diseases are responsible for 40% of global losses in crops each year. This has been moved to billions
of dollars of losses, and constitutes a serious threat to the presence of millions of farmers, especially small owners
who have no access to advanced agricultural technologies and infrastructure.

Timely time detection and effective treatment of agricultural crop diseases are important to ensure optimal
agricultural products and food security. Traditional methods of detecting disease rely on manual verification by
farmers or experts trained in agriculture. These methods, while effective in certain cases, are limited by their need

for expertise, visual assessment skills, and the ability to distinguish similar symptoms from illness.
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A CNN-based model specifically designed for classifying diseases in tomato leaves. This model attained a
classification accuracy of 95.6% across five different disease types as well as healthy leaves, demonstrating its
effectiveness in identifying features unique to each disease.[1]

Utilized transfer learning by adjusting pre-trained models like VGG16 and ResNet50 for classifying crop diseases.
ResNet50 achieved the best accuracy of 97%, demonstrating the benefits of deep architectures with residual
connections in understanding intricate visual patterns. [2]

The implementation of transfer learning utilizing the AlexNet architecture on a dataset concerning tomato diseases
has yielded a commendable level of classification accuracy. However, it is noteworthy that the model necessitated
considerable preprocessing efforts to ensure consistency in the results, thereby indicating inherent limitations in
its capacity to adapt to unrefined, real-world image inputs.[3]

These limitations underline the urgent need for automated, scalable, economically effective solutions for crop
detection. Recent achievements in the field of artificial intelligence (Al), particularly in the field of computer
vision and deep training, provide promising opportunities to solve this problem. The network of pig neurons
(CNNS) is a rich class of learning algorithms suitable for image analysis tasks, showing great success in visual
methods and recognition of image characteristics. Using CNN to detect agricultural diseases, it can accurately
classify plant diseases from sheets, provide timely decisions, and create intellectual systems enlightened by
farmers and interested farmers.

CNN-based detection with IoT devices for real-time disease monitoring in farms. The system achieved over 93%
accuracy but introduced concerns related to data transmission, privacy, and cyber-security.[4-6]

The adoption of these technical decisions not only increases the effectiveness of treating agricultural diseases, but
also supports sustainable agriculture by minimizing resource loss and promoting environmentally friendly
practices. This study focuses on using CNN's possibilities to develop reliable, accurate, deployed systems using
image-based analysis.[7-8]

METHODS

Overview of Convolutional neural networks (CNN)

Simple Neural Networks (CNN) is a specialized class of detailed learning algorithms that are widely used to detect
image classification, objects, and computer vision tasks. Their architecture is inspired by the visual cortex of the
human brain and is particularly effective during the automatic extraction of cosmic hierarchical functions from
input images. CNN power lies in its ability to study and automatically optimize functions, eliminating the need
for manual development of functions. If agricultural diseases are detected, CNN will succeed in detecting light
patterns of leaf texture, color changes, and morphology of damage that may indicate disease.

Several uses of modern CNN architectures. Each has unique properties and power to identify and classify tomato
sheets. These include:

*VGG16: Known for its simplicity and depth, the VGG16 uses complex beam layers and has achieved high
performance with a relatively simple design.

*ResNet50: Deploys residual connections to reduce extraction gradient issues, allowing deeper networks to be
effectively trained.

*Densenet]121: Connect each layer to other layers in the processing style to improve information flow and reduce

excessive functionality.
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* MobileNETV2: Optical architecture optimized for mobile devices and built using individual advice depth to
reduce parameters.

*Efficient NETBO: Uses a method of scaling connections to reduce optimal performance and resources to balance
depth, width and network resolution. The next section details the configuration, training and evaluation of these
architectures for detecting tomato sheet disease.

Model composition and learning process

To assess the effectiveness of various CNN architectures in classifying tomato sheet diseases, each model is
constructed and formed using coherent experimental parameters. The composition and learning process included
the following steps:

* Image Input Size: All images have been changed to 224x224 pixels to ensure compatibility with input layers for
all selected models.

*Party Size: Lot 32 size is chosen for the balance between memory usage and training speed.

*ERA: The model was formed at 50 ERAs and included early halts to avoid rethinking and unnecessary calculation
reductions.

* Optimization: Adam Optimizer was used at a learning level of 0.001 for adaptive learning ability and faster
convergence.

*Loss Function: Categories cross-entropy is used according to losses suitable for multi-class classification tasks.
* Validation Department: 10% of the educational data was used as a validation set to monitor the ability to
generalize the model during training.

* Inverted Issues: The early and inverted models of the model are implemented to stop training during convergence
and maintain the highest weight of the model.

* The device is used. Training was performed using an NVIDIA graphics processor for accelerated calculations.
Each architecture is either zero or subtly tuned in training use. For training, ImageNet’s pre-formed weights have
been used, with the upper layer being replaced by a dense layer of users adapted to the task of classifying 11
classes of tomato disease.
Layers have been added to fully connected steps to avoid rethinking. To improve generalization, data increase
was used dynamically during training. Performance measurements were recorded after each era to assess training
progress and the realization of hyperparameter adjustments. This unique configuration provided a fair comparison

between models and a coherent performance indicator.
ARCHITECTURE

This methodology can be proposed with VGG16, Densen, AlexNet, or other suitable architecture.

e VGGI16 Architecture
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* Diaper: The VGG-16 has 16 weighted layers, so it is called the VGG-16. The network consists of five blocks,
with the first two blocks having two layers of packages and the last three blocks having three layers of packages.
Each block has a layer of association, reducing the height and width of the image.

* Filter: The VGG-16 uses a 3x3 filter package in step 1. The network uses a consistent location of the package
and the largest layer of the swimming pool across its architecture.

*Optional: VGG-16-Borry Network with approximately 138 million parameters. *Image Input: The size of the
input image of the VGG-16 is 224 x 224.

*Spare model: A backup version of the VGG-16 is available. It is trained with over millions of images from the

ImageNet database. This preliminary network allows images to be categorized by objects of 1000 categories.

® DenseNet Architecture
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Fig.2 Dense block

A dense block is a structural block of the Denset architecture. Each dense block generally consists of many layers
of bundles with party normalization and nonlinear activation functions (e.g., rereading). It is important to note
that each layer in the high density block receives a map of functions for all previous layers in the entry, facilitating
the reuse and distribution of features.

In dense blocks, each layer receives concatenated output from all previous layers as an inlet. When a dense block
has Layer M, and when each layer generates a card K function (K is known as the growth rate), the L-THU layer
has cards with input elements k x (1 + 10) k x (1 + 10) (where LOLO is the number of input channels in the dense
block).

Examples of dense blocks:

[1Level 1: Receives input function.

[1Level 2: Input function + Receive layer outputl.

[1Level 3: Layer 2 input function + Level 1 level + Receives output.

This model continues for all layers of a block and provides a highly interconnected architecture.

* Dense options

Densets are mainly produced in several versions that differ from depth and number of layers.

[IDensenet-121: Contains 121 layers known for a balanced compromise between computational efficiency and
accuracy. Ideal for tasks that require moderate IT resources.

[1Densenet-169: With 169 layers, this option provides a deeper extraction of indicators that are adapted to more
complex datasets that require higher accuracy.

[1Denset-2011 and Denset-264: These options provide a deeper architecture that is adapted to highly complex

tasks that require detailed representation of symbols.
EXPERIMENTAL INSTALLATION

1Hardware and Software Environment
A reliable computer installation has been used to train, evaluate and configure the CNN models used in this study.
The hardware and software specifications are as follows:

Material composition:
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* Processor: Intel(R)Core(TM) i7 10 Gen CPU

*RAM: 16 GB DDR4

*GPU: NVIDIA GEFORCE GTX 1660 TI 6 GB VRAM
*Storage: 512 GB SSD

* Operating System: Windows 10 (64-bit)

Software and libraries:

* Programming Language: Python 3.9

*Deep Learning Library: Tensorflow 2.11, Keras 2.11

*Library Management: numpy, matplotlib, pandas, scikit-learn, opencv

* Jupyter notebook: Used for interactive development and visualization

*Google Colab/Kaggle Notebook: Used for additional GPU resources during the experience

This configuration provides the acceleration of the graphics processor to provide model fluids and effective
formation, ensuring rapid processing of critical lots and deep layers of neural networks. Programmable batteries
provided the flexibility to configure models throughout the project's lifecycle and visualize and monitor
performance.

Training and Testing Configuration:

The learning and testing process is carefully structured to ensure a reliable assessment of the efficiency of the
model and the reproducibility of the results. The following steps describe the experimental work process.

* Dataset Separation: The dataset is divided into three subsets.

oTraining Set (80%): Used to teach parameters modeling and updates. oTest (10%): Monitor the performance of
the model during training and use it for early outage use.

oSet of tests (10%): Used to ultimately assess post-training efficiency. * Cross-validation: In addition to a fixed
set of tests, a K (K = 5) cross-check was used in data learning to ensure reliability and reduce the variance in
performance ratios.

* Increase during training: Expanding methods such as rotation (+25°), kicking in horizontal and vertical states,
scale (beach = 0.2), and brightness adjustment were used in real time using the Imagenerator class to improve
model generalization. *Measurement monitoring: Accuracy, test loss, and F1 indicators were continuously
checked at that time. Early decisions were triggered if the audit loss was not improved for the fifth consecutive
time. * Control Point Model: Models with the best accuracy of controls are recorded on disk to avoid subsequent
degradation of ERA performance.

* Random seeds: Afixed random seeds (seeds = 42) were installed on Wednesday numpy and Tensorflow to ensure
regeneration of the results. This structured configuration ensured that the model was not overwhelmed by a
particular data subset and that its performance indicators reflected actual applicability in various input conditions.

RESULTS AND DISCUSSION

Model Performance Comparison
Standard classification criteria were used to assess the effectiveness of the chosen CNN models, MobileNetV2
and EfficientNetB0. Over several epochs, the outcomes were documented for both the training and validation
stages.

o EfficientNetB0:

e Training Accuracy: 91.09%
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e  Training Loss: 0.2552

e Validation Accuracy: 88.57%
e Validation Loss: 0.3426

e Epochs Trained: 10

High accuracy was demonstrated by EfficientNetB0 using comparatively few parameters. It demonstrated strong

generalization as its performance held steady over time. The model demonstrated effectiveness in striking a

balance between computational complexity and accuracy.
e  MobileNetV2 (5 Epochs):
e Training Accuracy: 70.81%
e Training Loss: 0.8492
e Validation Accuracy: 73.19%
e Validation Loss: 0.7554
e MobileNetV2 (10 Epochs):
e Training Accuracy: 75.06%
e  Training Loss: 0.6960
e Validation Accuracy: 75.52%
e Validation Loss: 0.7048

Despite having a little poorer accuracy than EfficientNet, MobileNetV2 is ideal for real-time deployment on

mobile or edge devices because to its reduced parameter count. Compared to the 5-epoch training option, the 10-

epoch training variant performed better.

Training Performance Summary Table (Epochs 57-70)

Epoch | Accuracy | Loss Validation | Valida
Accuracy | tion
Loss
57 0.8863 0.3175 | 0.8558 0.4050
58 0.9052 0.2893 | 0.8631 0.3754
59 0.8950 0.2988 | 0.8640 0.3900
60 0.8980 0.3057 | 0.8809 0.3387
61 0.8928 0.2995 | 0.8515 0.4423
62 0.8997 0.2865 | 0.8705 0.3823
63 0.9055 0.2621 | 0.8476 0.4359
64 0.9034 0.2763 | 0.8870 0.3439
65 0.9121 0.2522 | 0.8822 0.3442
66 0.9109 0.2552 | 0.8857 0.3426
67 0.9109 0.2552 | 0.8857 0.3426
68 0.9109 0.2552 | 0.8857 0.3426
69 0.9109 0.2552 | 0.8857 0.3426
70 0.9109 0.2552 | 0.8857 0.3426
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e Training Accuracy increased steadily, peaking at 91.09%.

e Validation Accuracy stabilized from Epoch 66, indicating the model has converged.

e Training Loss decreased consistently, showing continued learning.

e Validation Loss also improved and flattened around 0.3426, suggesting generalization without

overfitting.

Training accuracy — 91.09%
Training loss — 0.2552
Validation accuracy — 88.57%
Validation loss — 0.3426
The table provided illustrates the training log of the CNN model spanning from Epoch 57 to Epoch 70. The
training demonstrates significant convergence, with the accuracy maintaining a steady level of approximately
91.09% and the validation accuracy remaining stable at 88.57% starting from Epoch 66.
This trend suggests that we have reached an ideal training point, and implementing early stopping could help
prevent excessive computation.

model accuracy
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Fig.3: Training vs Validation Accuracy per Epoch
This line graph depicts the accuracy for both training and validation across 70 epochs. The blue line indicates the
training accuracy, while the orange line signifies the validation (test) accuracy.
This trend in accuracy demonstrates the model's effectiveness and supports the training method employed.

model loss
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Fig.4: Training vs Validation Loss per Epoch
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This graph illustrates the progression of training and validation loss over 70 epochs. The training loss is depicted
by the blue line, whereas the orange line illustrates the validation loss.
This illustration reinforces the model's convergence and validates that the chosen training strategies were
successful.
Accuracy Observations:

e  The training accuracy varied between 10—11%, showing no significant increase.

e The validation accuracy started at around 12.3% and then fell below 9%, indicating a lack of progress

and inadequate generalization.

Loss Observations:

e Training and validation losses both began high (over 2.29) and displayed a slight reduction.

e The convergence is quite restricted, suggesting under-fitting and poor learning.

Potential areas for enhancing the model

e Enhancing data for underperforming and minority categories.

e  Use class-weighted loss or focal loss to address imbalance issues.

e Examine the confusion matrix to identify patterns of class confusion.
The given bar chart presents a graphical overview of the precision, recall, and F1-score for every class of tomato
leaf disease.
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Fig.5

Key Observations;
1.Axes:

o X-axis: Denotes each category of disease (e.g.. Tomato  Bacterial spot, Tomato  Early blight, etc.).

o Y-axis: Metric values stretching from 0 to 1.

2.Color Key:

o Blue: Accuracy
o0 Orange: Memory

o Verde: Punctuacion F1

¢ Final Training Results (After 10 Epochs):
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Metric Value
Training Accuracy 75.06%
Training Loss 0.6960
Validation Accuracy 75.52%
Validation Loss 0.7048

The model has achieved a solid and balanced performance utilizing limited resources. The application of transfer
learning (probably through a fixed base) is proving effective. By making slight adjustments, you might be able to

increase the validation accuracy by a few percentage points.

Accuracy vs Epochs
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Fig.6:_Accuracy vs Epochs

* Accuracy vs Epochs

e Training Accuracy (blue line): Gradually rises from approximately 47% to around 75%, signifying

ongoing progress in learning.

e Validation Accuracy (orange line): Starts higher (~65%), fluctuates slightly, and ends near 76%.

There's a small gap between training and validation accuracy throughout, which narrows by the end,

suggesting good generalization.

Loss vs Epochs
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Fig.7:_Loss vs Epochs

*  Loss vs Epochs

e Training Loss (blue line) Decreases consistently from ~1.53 to ~0.68.

e Validation Loss (orange line): Drops quickly initially, then flattens slightly but continues to decrease
overall, ending near 0.69

CONCLUSION:
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The model demonstrates consistently strong performance, especially regarding significant illnesses. Several
classes exhibit uneven precision-recall, yet with focused enhancements, this model could become very reliable
for real-world application in detecting tomato plant diseases.

This research endeavour effectively illustrates the utilization of Convolutional Neural Networks (CNNs) for the
automated identification of crop diseases, specifically concentrating on the classification of tomato leaves.
Through a comparative analysis of two cutting-edge architectures—EfficientNetBO and MobileNetV2—the
investigation delineates their individual advantages:

EfficientNetB0 demonstrates exceptional accuracy and robust generalization capabilities, rendering it appropriate
for contexts characterized by substantial computational resources. Conversely, MobileNetV2, with its streamlined
architecture, presents a viable alternative for instantaneous implementation on mobile or edge computing devices.
Both architectures attained impressive outcomes across a variety of performance indicators, including accuracy,
precision, recall, and F1-score. The research emphasizes the critical role of meticulous data preprocessing,
augmentation, and transfer learning in the attainment of resilient and efficient models.

Furthermore, the investigation transcends mere technical assessment by examining deployment methodologies
and practical applications. Spanning domains such as precision agriculture, educational tools, crop insurance, and
governmental oversight, the project exemplifies the profound influence that such systems can exert on

contemporary agricultural practices.
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