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ABSTRACT  

Crop disease is a serious problem for agricultural performance, food security and economic stability around 

the world. Early and accurate detection of agricultural diseases is important to minimize losses, maintain 

culture health and ensure optimal profitability. This study examines the use of Adhesive Neural Networks 

(CNNs) for the automatic detection and classification of agricultural diseases using images. Known for 

exceptional indicators in image recognition problems, CNNs are used to analyze visual models and 

symptoms of disease in cultured leaves. This study uses modern CNN architectures such as VGG16, ResNet, 

Inception, and Densenet to develop reliable detection structures. The study highlights the potential to 

transform deep agricultural education by reducing reliance on manual testing in high-intensity labor forces 

and promoting sustainable agricultural processes. The results of this study contribute to improving 

agriculture accuracy and paving the way for in-depth research in the integration of artificial intelligence-

based solutions in agricultural systems. 

Keywords: Deep learning (DL), Convolutional neural network (CNN), machine learning (ML), 

Artificial intelligence (AI), feature extraction (FE), Image processing, VGG 16, Crop disease recognition, 

Dense Net, Mobile Net, Efficient Net. 

INTRODUCTION 

Background 

Agriculture is the foundation of the global economy, providing food, raw materials and employment to a large 

part of the population. It maintains human life and plays an important role in stimulating the national economy, 

especially in developing countries. However, agricultural productivity is increasingly threatened by a variety of 

issues, including pests, climate change, soil degradation and, above all, agricultural crop disease. 

Agricultural crop diseases caused by pathogens such as fungi, bacteria, viruses, nematodes can have serious effects 

on plant health. These diseases not only reduce productivity and quality, but also lead to significant economic 

losses, contributing to the global lack of food security. According to the Food and Agriculture Organization 

(FAO), plant diseases are responsible for 40% of global losses in crops each year. This has been moved to billions 

of dollars of losses, and constitutes a serious threat to the presence of millions of farmers, especially small owners 

who have no access to advanced agricultural technologies and infrastructure. 

Timely time detection and effective treatment of agricultural crop diseases are important to ensure optimal 

agricultural products and food security. Traditional methods of detecting disease rely on manual verification by 

farmers or experts trained in agriculture. These methods, while effective in certain cases, are limited by their need 

for expertise, visual assessment skills, and the ability to distinguish similar symptoms from illness. 
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A CNN-based model specifically designed for classifying diseases in tomato leaves. This model attained a 

classification accuracy of 95.6% across five different disease types as well as healthy leaves, demonstrating its 

effectiveness in identifying features unique to each disease.[1] 

Utilized transfer learning by adjusting pre-trained models like VGG16 and ResNet50 for classifying crop diseases. 

ResNet50 achieved the best accuracy of 97%, demonstrating the benefits of deep architectures with residual 

connections in understanding intricate visual patterns. [2] 

The implementation of transfer learning utilizing the AlexNet architecture on a dataset concerning tomato diseases 

has yielded a commendable level of classification accuracy. However, it is noteworthy that the model necessitated 

considerable preprocessing efforts to ensure consistency in the results, thereby indicating inherent limitations in 

its capacity to adapt to unrefined, real-world image inputs.[3] 

These limitations underline the urgent need for automated, scalable, economically effective solutions for crop 

detection. Recent achievements in the field of artificial intelligence (AI), particularly in the field of computer 

vision and deep training, provide promising opportunities to solve this problem. The network of pig neurons 

(CNNS) is a rich class of learning algorithms suitable for image analysis tasks, showing great success in visual 

methods and recognition of image characteristics. Using CNN to detect agricultural diseases, it can accurately 

classify plant diseases from sheets, provide timely decisions, and create intellectual systems enlightened by 

farmers and interested farmers.  

CNN-based detection with IoT devices for real-time disease monitoring in farms. The system achieved over 93% 

accuracy but introduced concerns related to data transmission, privacy, and cyber-security.[4-6] 

The adoption of these technical decisions not only increases the effectiveness of treating agricultural diseases, but 

also supports sustainable agriculture by minimizing resource loss and promoting environmentally friendly 

practices. This study focuses on using CNN's possibilities to develop reliable, accurate, deployed systems using 

image-based analysis.[7-8] 

METHODS 

Overview of Convolutional neural networks (CNN) 

Simple Neural Networks (CNN) is a specialized class of detailed learning algorithms that are widely used to detect 

image classification, objects, and computer vision tasks. Their architecture is inspired by the visual cortex of the 

human brain and is particularly effective during the automatic extraction of cosmic hierarchical functions from 

input images. CNN power lies in its ability to study and automatically optimize functions, eliminating the need 

for manual development of functions. If agricultural diseases are detected, CNN will succeed in detecting light 

patterns of leaf texture, color changes, and morphology of damage that may indicate disease.  

Several uses of modern CNN architectures. Each has unique properties and power to identify and classify tomato 

sheets. These include: 

•VGG16: Known for its simplicity and depth, the VGG16 uses complex beam layers and has achieved high 

performance with a relatively simple design.  

•ResNet50: Deploys residual connections to reduce extraction gradient issues, allowing deeper networks to be 

effectively trained. 

•Densenet121: Connect each layer to other layers in the processing style to improve information flow and reduce 

excessive functionality. 
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 • MobileNETV2: Optical architecture optimized for mobile devices and built using individual advice depth to 

reduce parameters. 

•Efficient NETB0: Uses a method of scaling connections to reduce optimal performance and resources to balance 

depth, width and network resolution. The next section details the configuration, training and evaluation of these 

architectures for detecting tomato sheet disease. 

Model composition and learning process 

To assess the effectiveness of various CNN architectures in classifying tomato sheet diseases, each model is 

constructed and formed using coherent experimental parameters. The composition and learning process included 

the following steps: 

• Image Input Size: All images have been changed to 224x224 pixels to ensure compatibility with input layers for 

all selected models.  

•Party Size: Lot 32 size is chosen for the balance between memory usage and training speed. 

•ERA: The model was formed at 50 ERAs and included early halts to avoid rethinking and unnecessary calculation 

reductions. 

 • Optimization: Adam Optimizer was used at a learning level of 0.001 for adaptive learning ability and faster 

convergence. 

•Loss Function: Categories cross-entropy is used according to losses suitable for multi-class classification tasks. 

• Validation Department: 10% of the educational data was used as a validation set to monitor the ability to 

generalize the model during training. 

• Inverted Issues: The early and inverted models of the model are implemented to stop training during convergence 

and maintain the highest weight of the model.  

• The device is used. Training was performed using an NVIDIA graphics processor for accelerated calculations. 

Each architecture is either zero or subtly tuned in training use. For training, ImageNet’s pre-formed weights have 

been used, with the upper layer being replaced by a dense layer of users adapted to the task of classifying 11 

classes of tomato disease. 

Layers have been added to fully connected steps to avoid rethinking. To improve generalization, data increase 

was used dynamically during training. Performance measurements were recorded after each era to assess training 

progress and the realization of hyperparameter adjustments. This unique configuration provided a fair comparison 

between models and a coherent performance indicator. 

ARCHITECTURE 

This methodology can be proposed with VGG16, Densen, AlexNet, or other suitable architecture. 

 

• VGG16 Architecture 

 

Fig.1 
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• Diaper: The VGG-16 has 16 weighted layers, so it is called the VGG-16. The network consists of five blocks, 

with the first two blocks having two layers of packages and the last three blocks having three layers of packages. 

Each block has a layer of association, reducing the height and width of the image. 

• Filter: The VGG-16 uses a 3x3 filter package in step 1. The network uses a consistent location of the package 

and the largest layer of the swimming pool across its architecture. 

•Optional: VGG-16-Borry Network with approximately 138 million parameters. •Image Input: The size of the 

input image of the VGG-16 is 224 x 224. 

•Spare model: A backup version of the VGG-16 is available. It is trained with over millions of images from the 

ImageNet database. This preliminary network allows images to be categorized by objects of 1000 categories. 

• DenseNet Architecture 

 

Fig.2 Dense block 

A dense block is a structural block of the Denset architecture. Each dense block generally consists of many layers 

of bundles with party normalization and nonlinear activation functions (e.g., rereading). It is important to note 

that each layer in the high density block receives a map of functions for all previous layers in the entry, facilitating 

the reuse and distribution of features. 

In dense blocks, each layer receives concatenated output from all previous layers as an inlet. When a dense block 

has Layer M, and when each layer generates a card K function (K is known as the growth rate), the L-THU layer 

has cards with input elements k x (l + l0) k x (l + l0) (where L0L0 is the number of input channels in the dense 

block). 

Examples of dense blocks: 

Level 1: Receives input function.  

Level 2: Input function + Receive layer output1. 

Level 3: Layer 2 input function + Level 1 level + Receives output.  

This model continues for all layers of a block and provides a highly interconnected architecture. 

• Dense options 

Densets are mainly produced in several versions that differ from depth and number of layers. 

Densenet-121: Contains 121 layers known for a balanced compromise between computational efficiency and 

accuracy. Ideal for tasks that require moderate IT resources. 

Densenet-169: With 169 layers, this option provides a deeper extraction of indicators that are adapted to more 

complex datasets that require higher accuracy. 

Denset-2011 and Denset-264: These options provide a deeper architecture that is adapted to highly complex 

tasks that require detailed representation of symbols. 

EXPERIMENTAL INSTALLATION 

1Hardware and Software Environment 

A reliable computer installation has been used to train, evaluate and configure the CNN models used in this study. 

The hardware and software specifications are as follows: 

Material composition: 
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• Processor: Intel(R)Core(TM) i7 10 Gen CPU 

•RAM: 16 GB DDR4 

•GPU: NVIDIA GEFORCE GTX 1660 TI 6 GB VRAM 

•Storage: 512 GB SSD 

• Operating System: Windows 10 (64-bit) 

Software and libraries: 

• Programming Language: Python 3.9 

•Deep Learning Library: Tensorflow 2.11, Keras 2.11 

•Library Management: numpy, matplotlib, pandas, scikit-learn, opencv 

• Jupyter notebook: Used for interactive development and visualization 

•Google Colab/Kaggle Notebook: Used for additional GPU resources during the experience 

This configuration provides the acceleration of the graphics processor to provide model fluids and effective 

formation, ensuring rapid processing of critical lots and deep layers of neural networks. Programmable batteries 

provided the flexibility to configure models throughout the project's lifecycle and visualize and monitor 

performance. 

Training and Testing Configuration: 

The learning and testing process is carefully structured to ensure a reliable assessment of the efficiency of the 

model and the reproducibility of the results. The following steps describe the experimental work process. 

• Dataset Separation: The dataset is divided into three subsets. 

oTraining Set (80%): Used to teach parameters modeling and updates. oTest (10%): Monitor the performance of 

the model during training and use it for early outage use. 

oSet of tests (10%): Used to ultimately assess post-training efficiency. • Cross-validation: In addition to a fixed 

set of tests, a K (K = 5) cross-check was used in data learning to ensure reliability and reduce the variance in 

performance ratios. 

• Increase during training: Expanding methods such as rotation (±25°), kicking in horizontal and vertical states, 

scale (beach = 0.2), and brightness adjustment were used in real time using the Imagenerator class to improve 

model generalization. •Measurement monitoring: Accuracy, test loss, and F1 indicators were continuously 

checked at that time. Early decisions were triggered if the audit loss was not improved for the fifth consecutive 

time. • Control Point Model: Models with the best accuracy of controls are recorded on disk to avoid subsequent 

degradation of ERA performance. 

• Random seeds: Afixed random seeds (seeds = 42) were installed on Wednesday numpy and Tensorflow to ensure 

regeneration of the results. This structured configuration ensured that the model was not overwhelmed by a 

particular data subset and that its performance indicators reflected actual applicability in various input conditions. 

RESULTS AND DISCUSSION 

Model Performance Comparison 

Standard classification criteria were used to assess the effectiveness of the chosen CNN models, MobileNetV2 

and EfficientNetB0. Over several epochs, the outcomes were documented for both the training and validation 

stages. 

• EfficientNetB0: 

• Training Accuracy: 91.09% 
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• Training Loss: 0.2552 

• Validation Accuracy: 88.57% 

• Validation Loss: 0.3426 

• Epochs Trained: 10 

High accuracy was demonstrated by EfficientNetB0 using comparatively few parameters. It demonstrated strong 

generalization as its performance held steady over time. The model demonstrated effectiveness in striking a 

balance between computational complexity and accuracy. 

• MobileNetV2 (5 Epochs): 

• Training Accuracy: 70.81% 

• Training Loss: 0.8492 

• Validation Accuracy: 73.19% 

• Validation Loss: 0.7554 

• MobileNetV2 (10 Epochs): 

• Training Accuracy: 75.06% 

• Training Loss: 0.6960 

• Validation Accuracy: 75.52% 

• Validation Loss: 0.7048 

Despite having a little poorer accuracy than EfficientNet, MobileNetV2 is ideal for real-time deployment on 

mobile or edge devices because to its reduced parameter count. Compared to the 5-epoch training option, the 10-

epoch training variant performed better. 

Training Performance Summary Table (Epochs 57–70) 

Epoch Accuracy Loss Validation 

 Accuracy 

Valida

tion 

 Loss 

57 0.8863 0.3175 0.8558 0.4050 

58 0.9052 0.2893 0.8631 0.3754 

59 0.8950 0.2988 0.8640 0.3900 

60 0.8980 0.3057 0.8809 0.3387 

61 0.8928 0.2995 0.8515 0.4423 

62 0.8997 0.2865 0.8705 0.3823 

63 0.9055 0.2621 0.8476 0.4359 

64 0.9034 0.2763 0.8870 0.3439 

65 0.9121 0.2522 0.8822 0.3442 

66 0.9109 0.2552 0.8857 0.3426 

67 0.9109 0.2552 0.8857 0.3426 

68 0.9109 0.2552 0.8857 0.3426 

69 0.9109 0.2552 0.8857 0.3426 

70 0.9109 0.2552 0.8857 0.3426 
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• Training Accuracy increased steadily, peaking at 91.09%. 

• Validation Accuracy stabilized from Epoch 66, indicating the model has converged. 

• Training Loss decreased consistently, showing continued learning. 

• Validation Loss also improved and flattened around 0.3426, suggesting generalization without 

overfitting. 

Training accuracy – 91.09% 

Training loss – 0.2552 

Validation accuracy – 88.57% 

Validation loss – 0.3426 

The table provided illustrates the training log of the CNN model spanning from Epoch 57 to Epoch 70. The 

training demonstrates significant convergence, with the accuracy maintaining a steady level of approximately 

91.09% and the validation accuracy remaining stable at 88.57% starting from Epoch 66. 

This trend suggests that we have reached an ideal training point, and implementing early stopping could help 

prevent excessive computation. 

 

Fig.3: Training vs Validation Accuracy per Epoch  

This line graph depicts the accuracy for both training and validation across 70 epochs. The blue line indicates the 

training accuracy, while the orange line signifies the validation (test) accuracy. 

This trend in accuracy demonstrates the model's effectiveness and supports the training method employed. 

 

Fig.4: Training vs Validation Loss per Epoch 
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This graph illustrates the progression of training and validation loss over 70 epochs. The training loss is depicted 

by the blue line, whereas the orange line illustrates the validation loss. 

This illustration reinforces the model's convergence and validates that the chosen training strategies were 

successful. 

Accuracy Observations: 

• The training accuracy varied between 10–11%, showing no significant increase.  

• The validation accuracy started at around 12.3% and then fell below 9%, indicating a lack of progress 

and inadequate generalization.  

Loss Observations: 

• Training and validation losses both began high (over 2.29) and displayed a slight reduction. 

• The convergence is quite restricted, suggesting under-fitting and poor learning. 

Potential areas for enhancing the model 

• Enhancing data for underperforming and minority categories.  

• Use class-weighted loss or focal loss to address imbalance issues.  

• Examine the confusion matrix to identify patterns of class confusion.  

The given bar chart presents a graphical overview of the precision, recall, and F1-score for every class of tomato 

leaf disease.  

 

Fig.5 

Key Observations:  

1.Axes:  

o X-axis: Denotes each category of disease (e.g., Tomato___Bacterial spot, Tomato___Early blight, etc.).  

o Y-axis: Metric values stretching from 0 to 1.  

2.Color Key:  

o Blue: Accuracy  

o Orange: Memory  

o Verde: Punctuación F1  

• Final Training Results (After 10 Epochs):  
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Metric Value 

Training Accuracy 75.06% 

Training Loss 0.6960 

Validation Accuracy 75.52% 

Validation Loss 0.7048 

The model has achieved a solid and balanced performance utilizing limited resources. The application of transfer 

learning (probably through a fixed base) is proving effective. By making slight adjustments, you might be able to 

increase the validation accuracy by a few percentage points. 

 

Fig.6: Accuracy vs Epochs 

• Accuracy vs Epochs   

• Training Accuracy (blue line): Gradually rises from approximately 47% to around 75%, signifying 

ongoing progress in learning. 

• Validation Accuracy (orange line): Starts higher (~65%), fluctuates slightly, and ends near 76%. 

There's a small gap between training and validation accuracy throughout, which narrows by the end, 

suggesting good generalization. 

 

 

Fig.7: Loss vs Epochs 

• Loss vs Epochs   

• Training Loss (blue line) Decreases consistently from ~1.53 to ~0.68. 

• Validation Loss (orange line): Drops quickly initially, then flattens slightly but continues to decrease 

overall, ending near 0.69 

CONCLUSION: 
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The model demonstrates consistently strong performance, especially regarding significant illnesses. Several 

classes exhibit uneven precision-recall, yet with focused enhancements, this model could become very reliable 

for real-world application in detecting tomato plant diseases.  

This research endeavour effectively illustrates the utilization of Convolutional Neural Networks (CNNs) for the 

automated identification of crop diseases, specifically concentrating on the classification of tomato leaves. 

Through a comparative analysis of two cutting-edge architectures—EfficientNetB0 and MobileNetV2—the 

investigation delineates their individual advantages: 

EfficientNetB0 demonstrates exceptional accuracy and robust generalization capabilities, rendering it appropriate 

for contexts characterized by substantial computational resources. Conversely, MobileNetV2, with its streamlined 

architecture, presents a viable alternative for instantaneous implementation on mobile or edge computing devices. 

Both architectures attained impressive outcomes across a variety of performance indicators, including accuracy, 

precision, recall, and F1-score. The research emphasizes the critical role of meticulous data preprocessing, 

augmentation, and transfer learning in the attainment of resilient and efficient models. 

Furthermore, the investigation transcends mere technical assessment by examining deployment methodologies 

and practical applications. Spanning domains such as precision agriculture, educational tools, crop insurance, and 

governmental oversight, the project exemplifies the profound influence that such systems can exert on 

contemporary agricultural practices. 
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